Exercise 92

A ball is thrown in the air from the top of a building. Its height, in meters above ground, as a function of time, in seconds, is given by $h(t)=-4.9 t^{2}+24 t+8$. How long does it take to reach maximum height?

Solution

Complete the square to write the quadratic function in vertex form.

$$
\begin{aligned}
h(t) & =-4.9 t^{2}+24 t+8 \\
& =-4.9\left(t^{2}-\frac{240}{49} t-\frac{80}{49}\right) \\
& =-4.9\left[\left(t^{2}-\frac{240}{49} t+\frac{120^{2}}{49^{2}}\right)-\frac{80}{49}-\frac{120^{2}}{49^{2}}\right] \\
& =-4.9\left[\left(t-\frac{120}{49}\right)^{2}-\frac{18320}{2401}\right] \\
& =-4.9\left(t-\frac{120}{49}\right)^{2}+\frac{1832}{49}
\end{aligned}
$$

Therefore, the maximum height the ball attains is $h=\frac{1832}{49} \approx 37.39 \mathrm{~m}$, which occurs at $t=\frac{120}{49} \approx 2.45 \mathrm{~s}$.

